Energy-conserving, Linear-scaling Quantum Molecular Dynamics
نویسندگان
چکیده
Marc J. Cawkwell, Anders M. N. Niklasson, T-1 Molecular dynamics (MD) simulations are used heavily in materials science, chemistry, and biology to study the evolution of structures, defects, and non-equilibrium phenomena at the atomic scale. In an MD simulation atoms move over a number of finite time steps according to the force acting on them. These forces are computed from the interatomic potential that gives the potential energy of the system as a function of the relative positions of all of the atoms. The ability of a simulation to capture the system of interest with high fidelity is determined almost entirely by the physical accuracy of the interatomic potential. It is well established that explicitly quantum mechanical models provide the most accurate descriptions of bonding, but it is not possible to employ these methods in large-scale simulations owing to their prohibitive computational cost.
منابع مشابه
A DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel
Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملEmbedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density functional theory
A linear-scaling algorithm has been developed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory. A divide-and-conquer algorithm is used to compute the electronic structure, where non-additive contribution to the kinetic energy is included with an embedded cluster scheme. Ele...
متن کاملBohmian dynamics on subspaces using linearized quantum force.
In the de Broglie-Bohm formulation of quantum mechanics the time-dependent Schrodinger equation is solved in terms of quantum trajectories evolving under the influence of quantum and classical potentials. For a practical implementation that scales favorably with system size and is accurate for semiclassical systems, we use approximate quantum potentials. Recently, we have shown that optimizatio...
متن کاملMolecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling
An extended Hamiltonian technique for performing grand canonical ensemble molecular dynamics simulations has been reformulated to include umbrella sampling, thus improving the efficiency of particle creation and annihilation processes. This was accomplished through incorporation of a bias potential in the Hamiltonian that modifies the free energy contour between integer particle number states. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012